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Abstract 

Recently we showed [I] that the widely used simulation code TDA3D, even though a 

single frequency code, can be used to determine the power spectrum in the SASE process 

with excellent approximation in the exponential growth regime. In this paper, we apply this 

method to the BNL Cornell Wiggler A SASE experiment as an example. 

When the gain is not very high, there are many modes in the radiation, which seems to 

make the analytical calculation very dif6cult. However, we show that the increment of the 

radiation due to SASE over the spontaneous radiation can be expanded in terms of guided 

modes with rapid convergence. Thus when the spontaneous radiation is substracted from the 

SASE power during the calculation, there is a good agreement between the analytical theory 

and the numerical simulation . 

1. Introduction 

Recently, we showed [l] that the TDA3D code, which has been modified to include har- 

monic generation calculation, can be used to calculate the power spectrum. One reason that 

made this possible is that in the linear regime there is a very simple scaling relation between 

the number of simulation particles and the output power: the output power is inversely pro- 

portional to the number of simulation particles. Hence, the number of simulation particles 

can be made much smaller than the actual number of electrons in the beam, making the 

simulation practical. 

This method uses an entirely different approach to reduce the number of simulation parti- 

cles as compared with the simulation codes such as GINGER. We shall briefly compare these 
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two approaches. The codes such as GINGER use an artificial initial distribution to simulate 

the SASE start-up process. To suppress the increased shot noise due to the limited number 

of simulation particles, the codes are based on a distribution with equally spaced particles. 

To introduce a controlled noise, they generate a random deviation from the equally spaced 

distribution with a controlled rms value of the displacements. The rms displacement is chosen 

to reproduce the same mean and variance of the bunching parameter. While the mean and 

variance of the bunching parameter simulate the initial status of the system, it is not evident 

that the higher moments of this quantity would not afIect the high gain process, it is also not 

evident that the mean and variance of the relevant quantity would remain to be the same as 

the realistic distribution during the high gain process, even though the simulations did show 

an agreement with the linear high gain theory. 

As compared with these codes, our method uses a realistic distribution instead of an 

artificial evenly spaced distribution. We do not attempt to suppress the noise due to the 

limited number of simulation particles. Rather, use the scaling relation to go from the 

simulation case with increased start-up noise (due to the reduced number of simulation 

particles) to the realistic case. In this manner, we obtain the correct radiation power in the 

linear regime. 

Another reason that we can use a single frequency code such as TDA3D to calculate the 

intrinsically broad band SASE process is the following. In the original TDA cod.e, all the 

simulation particles are limited to within one optical wavelength, or, one cell. During a later 

modification of the code for harmonic generation calculation, we extended the code such that 

the simulation particles could be in an arbitrary number of wavelengths. It is easy to see that 

if the number of cells is nl, then the code is describing a fictitious electron beam distribution 

with longitudinal periodic structure of n1 optical wavelengths. That is, we artifici.ally set a 

periodic boundary condition on the electron beam with period equal to nL optical 

In this case, the radiation spectrum has a line structure with frequency spacing 

wavelengths. 

w,/‘nl, where 
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w, is the optical frequency. 

We denote the slippage distance by I, = N,X,’ , and the distribution period by I = nlXy, 

then when I > I, , the line spacing w,/nl is much narrower than the spontaneous radiation 

width w,/& and the dense line structure gives a profile of the spontaneous spectrum. When 

we choose the period to be equal to the slippage distance Z = I, , i.e., when n1 = N,, the line 

spacing is equal to the radiation spectrum width, and hence there is only one line. The slippage 

N,X, is equal to the spacing between the periodic boundaries of the electron beam. Hence 

there is no interaction between any two of the idealized periods of the electron distribution. 

The calculated output energy within one idealized period of the electron distribution is the 

same as it would be from a non-periodic structure in the electron beam, i.e., the same as for 

the realistic case for SASE process. The output power is shown to be * apr . UJ (9 

Now from the 1D analytic theory of SASE, we know that the full bandwidih of the SASE 

spectrum is [l] (l/N,) - dv g (l/N,) - ~/a_ This width is narrower than 

2/Nu, as long as L, < 16L G. So when the wiggler length is much shorter than 16 power gain 

lengths, if we choose nl to be equal to the nmber of periods N,, to good approximation there 

is only one line within the bandwidth centered around the resonant frequency. Therefore, 

when the wiggler length is much shorter than 16 power gain lengths TDASD serves as a good 

approximation to the output power even though it 

this paper we assume the electron bunch is much 

shape is sufhciently smooth. 

handles only one single spectral line. In 

longer than the slippage and the bunch 

In section 2, we shall apply the new method to simulate the spontaneous radiation power 

spectrum in the BNL Cornell Wiggler A experiment as an example and a check of the calcu- 

lation. In section 3, we apply the method to the SASE calculation of the same experiment, 

and describe the analytical calculation_ 

2. The calculation of the spontaneous radiation spectrum 
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We consider the parameters for the BNL Cornell Wiggler A SASE experiment: the radia- 

tion resonant wavelength is X, = 5,xm, the wiggler-period is X, = 3.3cm, the wiggler length is 

L, = 1.98m, the number of period is N, = 60, with wiggler parameter K,, = 1.44, and the 

e-beam energy is y = 82. We take a small current 10 = 10 ampere to calculate spontaneous 

radiation. Our analytical calculation based on the well-known spontaneous radiation theory 

shows that the power spectrum, integrated over the full solid angle of the radiation, is as 

shown by the solid curve in Figure 1. Because when the radiation angle is deviating from the 

forward direction, the wavelength is always shifted to longer, even though for a very small 

solid angle the radiation spectrum is a simple sine function of width l/N,, the integrated 

spectrum over all angle is more like a step function with rising width l/NW near the resonant 

wavelength X,. We can show that the peak of the power spectrum, integrated over the full 

solid angle, is given by: 

where 0, G dw is defined as the opening angle of the spontaneous radiation within a 

sufficiently narrow bandwidth, and Bo is the brightness in the forward direction and at the 

resonant frequency, given by: 

eZ0I0 = TN;y2 K’ax [JJ12w,, 

o=o ti*=(i, (1+ *,2 
(2) 

with Z. = 3770 the vacuum impedance, and [J J] the Bessel factor. We can also show that 

at the resonant wavelength X,, the power spectrum is half of the peak height, and the peak 

is positioned at a longer wavelength, away from X, by a space of order but less than X,/N,. 

For our example, these formulas give 8, = 2.2mrad and $- UJ (9 
apEn. = 0.043watt. 

UJ peak 

As explained before, to calculate the power spectrum, we choose the number of w<avelength 

cells in the TDA3D calculation to be N, = GO. The number of electrons in one wavelength is 
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then N = I X / 0 y ec = 1.1 x 10’. Because the algorithm used by TDA3D [5], we must always 

specify an input power to normalize the calculation, we choose the input power to be 10-r’ 

watt, which is small enough that the output is entirely determined by the shot noise of the 

simulation particle, and not affected by this number. When the number of simulation particles 

is N’ = 1200, for the given parameters, we found that at X = 5.05pm, the radiation power 

reaches the peak value of P’ =40 watt, after averaging over many runs. Thus, using the 

scaling relation, we find that the real radiation power spectrum is 

peak 

1200 

1.1 x 106 
X 40 = 0.04 watt 

To test the convergence of the 

simulation of the power spectrum 

simulation, the figure 1 gives the results for several sets of a 

as a function of the wavelength X and compare them with 

the analytical theory. The figure also indicates the number of runs of TDA3D for each of the 

average points. The figure shows that when the number of radial mesh points NPTR=360 

and average over 20 runs, the simulation is converging to the analytical theory. 

3. The simulation of SASE 

To simulate SASE, we assume an idealized distribution used in [2]. The transverse distri- 

bution is a step function profile with a constant current density within a radius of &a,, where 

rs 2= 170,~~rn is the rms radius, the current density is zero outside this radius. We assume 

all the electron momentum is parallel to the wiggler axis. We assume both the horizontal 

and vertical focusing is zero. Use the method described in section 2, we plot in figure 2 the 

power spectrum at the resonant frequency w, as a function of current, varied from zero to 110 

ampere, every point is an average over 10 run with different initial random number seeds. In 

this calculation we used 5 azimuthal modes with m=O,fl, It2. 

For this idealized model, the SASE power in the guided modes is explicitly solved [2,3]. 

The power spectrum in a mode n={j, m} ( J . is the radial node number, m is the axial node 
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number) is: 

where Lc, is the power gain length, and a is the scaled beam size dehned by ?? = 13k,k,pa,, 

with k,, k, the wavenumber for the radiation and the wiggler respectively. p is the Pierce 

parameter [4] given by 

(2p)3 = 
noZoe2K~T,,[JJ]2 

2,rrq” k; c ’ (5) 

where no is the peak current density, in our case it is just the current density within the 

edge radius &cs: since it is a constant. K,,, is the rms wiggler parameter. The gain 

length is given by Lc, = X,/S~p1rn(X, (ii)). Thus the power spectrum Eq(4) is completely 

determined by the scaled beam size E through two functions: the coupling coefficient C, and 

scaled growth rate X,. The physical meaning of Eq(4) is clear now: the SASE input noise is 

the spontaneous radiation power spectrum within two power gain lengths 

and this input noise is coupled by the 

give the output power spectrum. 

The two functions C, and X, are 

LlL 
coupling C, , and then amplified by a factor ie Len to 

calculated and given in detail by [l], and to a good 

approximation when iz 2 0.25, the calculated result are fit with: 

Irn(X ?I ) z ?!!e-+(ao+al&), and 
2 

c (-) ” A na -&+o+i3& 
e a 

7ra2 

(6) 

(7) 

where for the mode { l,O}, we have ~0 = 0.397, cxl = -0.0067, ,00 = 1.093, PI = -0.02; while 

for the mode {l,ztl} we have a0 = 1.2625, cxl = -0.1494, Do = 5.082, ,01 = -0.5707. 

As an example, let us take 10 = 110 ampere. Using Eq. (5), we find that the Pierce 

parameter p = 8 x lo-‘, and the scaled beam size a = 0.95. Applying these to Eq. (6), and 
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Eq.(7), we find the power gain lengths and coupling coefficients for the mode n={ l,O} to be 

LG = 0.26 m, C = 0.24 , and for mode m = { 1: ki}, LG = 0.43 m, C = 0.021. 

Using Eq. (4)) we can calculate the power spectrum in each mode, and sum over modes. 

However, empirically, we find it is convenient to calculate the increment of SASE power over 

spontaneous radiation power ratio by s mnming over the corresponding ratio increments for 

all the modes. Thus we have 

( > dp dd SASE 
-1= 

[ fe% 
-1 
1 

0.24~ 
2 x 0.26 

x 
1.98 

x 0.021 
2 x 0.43 

x 
1.98 

+ . . . 

= 13.6 + 0.2 + . . M 14. (8) 

The 1 in each term in the square parentheses is the subtraction of the contribution from the 

spontaneous radiation. The extra factor 2 in the second term is due to the two modes with 

-&Ill_ 
m=fl. For higher modes, the gain factor $e LGn is rapidly reduced to nearly one or even 

smaller than one, and the formula eq.(4) is not valid. However, the gain for these higher 

modes are negligible, this means that they only contribute to the spontaneous radiation, so 

(ice - ) 1 for these modes can simply be replaced by 0 as an approximation. The SASE 

over spontaneous radiation ratio is then 14-t-1=15. The SASE power spectrum calculated this 

way is plotted against the simulation results in Figure 2, showing a good agreement. 

Naturally, one familiar with one dimensional high gain FEL theory would raise a question. 

When the gain is not very high there are three longitudinal terms, i.e., in addition to the 

growth term, there are other two terms comparable with the growth term: one is exponentially 

decaying, the other is oscillating, and the foxrmla Eq.(4) is not valid. Why we can still use 

this formula even the total SASE over spontaneous radiation ratio is rather small, as shown 

in figure 3? 
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The answer is that, for the two modes we wrote down in Es.(g), the gain factor is indeed 

much larger than one. In three dimensional theory, the corresponding decaying mode and and 

oscillating mode should be calculated as other transverse modes. They are neglected because 

we are only calculating gain, and these modes only contribute to the spontaneous radiation, 

which is subtracted from SASE calculation. If we do not subtract the spontaneous radiation 

from the SASE, the series would converge very slowly. In addition, for the higher modes, the 

growth term is not large enough to dominate over the other decaying and oscillating terms, 

so the calculation becomes very difficult. In short, using guided modes to calculate sponta- 

neous radiation is very diflicult and unnecessary. By subtracting the spontaneous radiation, 

and only calculating the gain, we avoid this difficulty, and obtain an empirically excellent 

approximation. 

Up to now, we used an idealized step function beam profile to test the calculation. To 

compare with experiment, we use a more realistic waterbag model. We choose the same rms 

beam size ga: = 1’70~~~. This corresponds a normalized emittance &n = 4mm - mrad for our 

case with a focusing betatron wavelength Xp = 3.7,m. We take the local energy spread to be 

n-/ 

( > 
- 
7 

= 4 x lo-*. These parameters lead to a power gain length with waterbag model 
rms 

LG = 0.26m, same as the step function model case before. 

The calculated results are shown in Figure 3. The dots are the simulation with the wa- 

terbad model, and the solid line is the calculation using the analytical method Eq.(,8) for the 

step function model with the same rms beam size. The agreement is very good considering 

the crude nature of the approximation. 

A recent SASE experimental result is plotted on Figure 4. We did not have enough time 

to characterize the e-beam before this conference. However, the plot clearly shows that the 

beam quality is better than our originally designed parameters used for our calculation in this 

paper (110 amp, 4mm-mrad). 
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Figure 1. Output power spectrum for spontaneous radiation as a function of wavelength 

Figure 2. Output power vs current for the step function model 

Figure 3. Output power vs current for the waterbag model 

Figure 4. Radiation energy vs e-beam charge in the Cornell Wiggler A SASE, experiment 

at BNL 
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